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RECENT RESULTS ON CHARACTERIZATION OF PROBABILITY
DISTRIBUTIONS: A UNIFIED APPROACH THROUGH EXTENSIONS

OF DENY'S THEOREM

ABSTRACT

"The problem of identifying solutions of general convolution equations

relative to a group has been studied in two c].asei-al papers by Choquet and .

Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have cWnhidered the

analogous problem relative to a certain semigroup of the real line, which

extends the results of Marsaglia atid Tubilla (1975) and a lemma of Shanbhag

-(1-9?)-. The extended versions of Deny's theorem contained in the papers by

Lau and Rao, and Shanbhag (which we refeF to as LRS theorems) yield as special

cases improved versions of several aharacterizations of exponential, Weibull,

stable, Pareto, gecme rio, Poisson and negative binomial distributions

obtained by various authors during the last few years. In this paper we

revie;w:,some of the recent contributions to characterization of probability

distributions (whose authors do not seem to be aware of LRS theorems or

special cames exiating earlier) and show how improved versions of these

results follow as immediate corollaries to LHS theorems. We also givera short

proof of Lau-Rao theorem based on Deny's theorem and thus establish a direct

link between the results of Deny (1961) and those of Lau and Rao (1982). A

variant cf Lau-Rao theorem is proved and applied to some characterization .

problems. .

Key Word-. Characterizations, Deny's theorem, Exchangeable random
variables, Exponential, geometrio, Pareto and stable
distributions, Integrated Cauchy functional equations,
Lau-Rao theorem, Shanbhag' s Ienma.
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1. INTROIUCTION S

Let S be such that it equals either R (=(-,o)) or R (=[0,oo)), a be a

measure on (the Borel a-field of) a such that ((0) 0 ) > O, and H : S--R+ be

a non-negative continuous function which satisfies the functional equation I

(1.1) H~z) aJH(x + y)a(dy), V x e S.

From a general theorem or Deny (1961), it follows that if S f R, then either

HWx 0 or iif•ii

(1.2) HWx) = 4(x)exp(- nlX) + t 2(x)exp(- n2 x), x e S

with ni such tat

J a~d u 1, 1 1, 2

and ýi as non-negative periodie functions such that

(x+ y) = •j(x), V x e S and y e supp a,

for i 1, 2. (Observe that if S R and H 0, then the measure a involved in

(1.1), has to be a Radon measure). As a corollary of Deny's general theorem,

we have Choquet and Deny (1960) theorem which has important applications in

renewal theory (Feller, 1966 Vol. 2, p. 351).

Recently, Lau and Rao (1982) solved the equation (1.1) when S * R+ which

subsumes partial results given by Marsaglia and Tubilla (1975), Klebanov .

(1977), Shanbhag (1977), Shimuzu (1978) and Ramachandran (1979). A simpler



proof of Lau-Rao theorem appears in Ramachandran (1982). More recently,

Alzaid, Rao and Shanbhag (1983) used an argument based on de Finneti's theorem

concerning exchangeable random variables to derive the same result. Davies and

Shanbhag (1984) have given a martingale proof for an extended version of

Deny's result which generalizes Lau-Rao theorem. Extensions of Deny's general

theorem to the case of a semigroup have also been given via other approaches

by Richards (1981) and Ressel (1984) among others. However, both Richards and

Ressel were able to deal with the problem only under some stringent conditions

which imply that the semigroup generated by the support of the measure in the

functional equation equals the semigroup itself; additionally Richards

requires the function to be bounded and Ressel requires the semigroup to be

countable.

Various applications of Lau and Rao (1982) theorem and Shanbhag's (1977)

lama, which we refer to as LRS (Lau-Rao-Shanbhag) theorems have been

considered by Lau and Rao (1982), M. B. Rao and Shanbhag (1982), Rao (1983),

Alzaid (1983) and Davies and Shanbhag (1984) with special reference to damage

models, order statistics, record values, lack of memory, reliability and

Srenewal theories. The main purpose of this paper is to indicate further

applications of LRS theorems by reviewing some of the recent contributions to

characterizations of probability distributions, e.g., Dallas (1981), Deheuvels

(1984), Gupta (1984) and Orosswald, Kotz and Johnson (1980), whose authors do

not seem to be aware of LRS theorems or the special cases existing earlier.

We show that LRB theorems not only provide a unified approach to a wide

variety of characterizations of distributions such as Poisson, Pareto,

Weibull, stable, geometric and negative binomial, but their application leads

in many oases to improved versions of the results already available in the

. .. .. .. . . . . . . . ..



literature. In this paper we also give a simple proof of Lau-Rao theorem via

Deny's theorem and thus obtain a direct link between the two theorems. In

addition, we investigate the problem of solving the integral equation

(1.3) + st (x) * f(X + y)jp(dy) a.e.[LQ] V x E R+.
R

where a and 8 are constants and indicate its applications to aharaoterization

problems.
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2. LAU-RAO THEOREM

Lau-Rao theorem. Let H be a non-negative real locally integrable

measurab].e function on R÷, which is not a function i4.d onenlly equal to zero

a.e. ELI, (L indicating Lebesgue measure), satisfying vije functional equation

(2.1) H(x) u J H(x + y)a(dy) a.o.[LL for x e R
f+

where a is a 0-finite measure on R+ such that o({O)) < 1. Then one of the

two possibilities hold.

(a) a in (2.1) is arithmetic with some span X and

H(x + n• a H(x)bn, n 0, 1,..., a.o.JLJ for x e R÷

with b such that

bnd(0 n 1.

(b) o in (2.1) is non-arithmetic and

H(x) exp {-nx) a.e.[hL for x c R÷

with n such that

exp(- x}a(dx) s 1.

Lau and Rao (1982) gave a self-contained real variable proof of the above

theorem. We now present an alternative proof based on Deny's (1961) theorem,

which provides an important link and at the same time brings out the main

difference between the two theorems.

................................................ '.....,..-... ...

~~~~~~... . . . . . . . . . . .
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Proof There is no loss of generality in assuming that a(R+) > 1.

Consider some d > 0, and define g.

(2.2) fi(x) . H(x + y)dy, x e R.
J0

Clearly H Is oontinuoua and in view of Fubini's theorem satisfies (2.1) with

the statement 'a.e.[L]' deleted. From elementary Lemma I of Davies and

Shanbhag (1984), it immediately follows that for every support point a of a -.

S
(2.3) •I(x .a. 2s)A(x) > [^(x + a)]2, x e R+.

We can choose d sufficiently large so that H(O) > 0 and henoce H(so) > 0 for

some positive support point s0 of U. From (2.3), it follows that H(2s 0 ) > 0.

Consequently, for suffioiently large d, we have i(x) > 0 V x e [0, 2s0o for

some positive support point so of c,. We shall now fix the b0 in question, .

From (2.3), we can then claim that i(x) > 0 V x R+ and

H(x + nso) .n. It",o-~ +~ 0  : n a 1, 2,... ,__
fi(x + -n--'7*a).-,

is an increasing sequence for each x c R+. Clearly then we have

(2.4) fi(x + so) I v W(x), x C ÷,P

where

v. i.ff H(x) + 0 x _e'0 > 0. .ii

There is no loss of generality in assuming a({0}) = 0. If a is arithmetic, or

more generally if there exiets a constant a > 0 such that o((O,o)) = 0 (i.e.,

if 0 is not a cluster point of the support of o), define a - a. Otherwise,



considering c such that C((O,o)) < 1 and 0 < a < so, define

o( ,) =( [c , -)n -
n z:

to be a measaure on R, where C, a , and for each n >. 2, an is the

oonvolution of the measures an_1([O,o)O-) and a. It is then obvious that

C(O,c)) x 0 and

(2.5) H(x) u= H(x y)o(dy), x E R+.

Observe that the measure a defined here is such that it is arithmetic if a is

arithmetic, and in that case, both have the same support; also a is non-

arithmetic if a is non-arithmetio. Define now inductively H(,. for

x C [- (n + 1)o, - no) for n u Op 1, 2,... such that

(2.6) H(x) • J(,=)H(x + Y)a(dy). H
It is then easily seen, especially in view of (2.4), (2.5), and (2.6), that we

have a continuous function H : R -O-R+ such that its restriction to R+ agrees

with our original H and

(2.7) H(x) a R H(x + y)a(dy), x e R.

From Deny's (1961) theorem, it then follows that

AH(x) = F(x)e7nx, x C R

for some n > 0 and some function • satisfying the condition

C(x + s) = &(x), x R H for each support point s of a. The required result now

follows on noting that

................................................ . . .. ..... ...
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JH(y)dy Je- Ydy V x Ž0xH~y~y 1I exp(-nd) •

if C is non-arithmetic, and

- > H(y + nX)dy H(y)exp(- nXn)dy Y x 1 0, n O, 1,...

if a is arithmetic with span ) and

Sexp(- nx)a(dx) a 1

Remar I If the conditions in Lau-Rao theorem are met with R÷ replaced .

by H, then it follows at once from Deny's theorem that

(2.8) n Io H(x + y)dy &ýn)(x) exp(- ix) + -
0~()ep( lx exp(- 2)

for n = 1, 2,..., a.e.[L] for x e R, where n1 and are as defined in (1.2)

and Cin) and 4n) are of the form of •; and i2 in (1.2) with S u R. Since H is

locally integrable, it follows that .

lim n f H(x + y)dy = H(x), a.e.[L] for x c R
n.*.o, 0

and hence that if 30 is any nonzero support point of a (which clearly exists),

then

I

I o

I

.. '. ~. . 0** .* .- .0-.~ ~. ~ . .**.*, ..........................
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(2.9) n J/nH(x + y)dy -H(x) and n 1/ H(x +so~ + y)dy -H(x +so

as n -*a, a.e.[L] for x c R.

Consequently, in view of (2.8), it follows that there exist funotions and

2si 12 ~ ~ ~ ad~ as n a.e.[L] on R, and

hence such that

(2.10) HWx . Yx)exP(- r1nx) + t 2(x)eXP(- ri2z) a.e.[LJ for x e R.

The result (2.10) was established by Lau and Rao (1984a).

j ~Incidentally, it may be noted here that in the case of nonarithmetio a,

the form of H in (2.10) simplifies to

(2.11) H(x) cc exp(- r~x) + (1 - )GXP(- rn2x) a.e.(L] for x e R,

where 0 is some constant in [0,1].

b Rmark..2 From Davies and Shanbhag (1984~), it is evident that at least in

the case of continuous H, Lau-Rao theore remains valid even when the

requirement of a -finiteness of the measure a is dropped. (This is so more

S clearly in the case of Remark '1) However, the following example shows that

the general result of Lau-Rao theorem doe3 not reain valid if a is not

"afinite.
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E Let a be that measure on R÷ for which its restriction to (1,21

agrees with the counting measure on (1,2] and a([0,11 j(2,-)) .0. Define a

function H R -R- such that

I if x ( 0,1) and x n2,
H(x) a 0 otherwise.. .

Observe that we have here

H(x) u H(x ÷ y)a(dy) a.e. ELI for x s H_

but H is not of the form as in Lau-Rao theorem.

Reark 4 As observed by Lau and Rao (1982) and Alzaid, Rao and Shanbhag

(1983), Lau-Rao theorem yields the following modified verston of Shanbhag's

(1977) lemma.

.Lama Let t(vn, wv ) : n 0 0, 1,...) be a sequence of vectors with non-

negative real components such that v. i 0 for at least one n, w0 < 1, and the

largest common divisor of the set {n : w. > 01 is unity. Then

M L V'nwn, m 0, 1....
n=0

if and only if

vn vObn, n =0, 1, 2,... and 1bn xl 1
nuot n

for some b > 0.

The modified version of Shanbhag's lemma yields somewhat improved

versions of the general characterization theorems for the univariate and



bivariate cases gi.ven in Shanbhag (1977) as discussed in Shanbhag (1983).

jFurther variants and extenaions rij Shanbha_7's (1977) lemma have been

considered, amorg others, by Alzaid, Rao and Shanbhag (1983) and Lau and Rao

(19841b).

. . . ... ... .
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3. COMMENTS ON RECENT RE3ULTS

In this section we review some recent contributions to characterization

of probability distributions, comment on the gaps in the proofs and show how

improved versions of the results can be obtained by using LRS theorems.

3.1 Gu.... (I "")

One of the main theorems (Theorem 3.1) of Gupta (1 9 84 ) is that

"E[( - Rj)lRj -" (independent of y) for fixed J and r .. 1 iff F is

exponential, where R1 , H2 ,... are record values from a continuous distribution

function F such that F(O) - 0." We have the following comments on the

statement and proof of Gupta's theorem.

Gupta mentions that the condition on conditional expectation in his

theorem implies that

(3.1~~ .1t 0 ru1 L yx du
1,00

where S(x) u 1 - F(x), or

(3.1.2) c S(y) =Jrur-S(u + y)du.

But for (3.1.2) to be valid for all y c (0,-), it is necessary to assume,

besides continuity of F, that F(x) > 0 for x > 0, which is not explicitely

mentioned in the statement of the theorem. Once (3.1.2) is assumed to be

valid for all y, then an application of Lau-Rao theorem immediately shows that

S(x) e~x which is the required rerult.
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However, Gupta obtains the solution in a different way by considering

Mellin's transform of both sides of (3.1.2), deriving an equation of the form

(3.1.3) h(t) - Ah(t - r) * 0 for t > r, ".-

and writing its solution as h(t) u kebt attributed to Bellman and Cooke (1963,

p. 54). Unfortunately (3.1.3) has no unique solution; for instance,

h(t) exp G Xsin 2 - ,) X A 0

is also a solution, which shows that further arguments are necessary to

Justify Gupta's solution.

The same remark applies to the alternative proof given by Srivastava and

Singh (1975, p. 273) for the Rao-Rubin (1964) theorem, quoting the Bellman-

Cooke result.

As observed above, the statement of Gupta's theorem needs the additional

condition, 0 < F(x) for x > 0. Some extensions of Gupta's result are as

follows:

(i) The result is true even if 0 < r < 1 since Lau-Rao theorem is still
appl icable.

(ii) If F is such that F(a) u 0 and F(x) > 0 for x > a, then the
characterization is valid but for a modification of F as
exponential with a shift in the origin.

(iii) Lau-Rao theorem also implies that the sane characterization is
obtained if in Gupta's condition, the expression (H - R+)r is
replaced by ý(R4 1 - B ) where 0 is an increasing or decoasing
real function 0+ nR÷ w th 0(x) A *(0÷) V x > 0 and such that
E[Iý(Rj÷I - R )I] < . s a special case of this result, it follows
that

E"[1 -exp(R-,. R", ." R " constant a.e.
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characterizes an exponential distribution (but for a shift).

(iv) If F is arithmetic with its support as {0, 1, 2,,..., then the
condition E[(Rj+I - Rj)rlRj a y] o (independent of y) implies
that

F F arbitrary for a a ,...,- 1
F) -(s-) Jo bsfor a J, J * 1,.... p

The result is obtained by an application of Shanbhag's lama. The last result

remains valid even when the expression (R÷ - a j)r is replaced by *(Rj+1 - Ra)

where (O~n): n = 0, 1,.... is an increasing or decreasing real sequence with

*(0) A 0(0) A ... A *(J) and such that E(I,(R3 j 1 - R,11 <..

3.2 Opsasald. Kotz and Johnson (1Q80")

Orosswald et al (1980) proved that if F2 is a distribution function on ]R+

with survivor function S2 satisfying %.(0) * 1 and having a power series

einparsion, then

(3.2.1) [- x)F 1 (dx) 2(t)/S2(x)]F1(dx), t E ÷.-

for every distribution function F1 on R, with FI(0) a 0 if and only if F2 is

exponential. (In (3.2.1), S2 (t)/S 2 (x) is interpreted as zero if S2 (x) a 0).

They conjectured that the result in still true when S2 (or equivalently F2 ) is

merely assumed to be continuous. More recently, Westoott (1981) used a

probabilistic argument to show that the oonjroture is correct.

tH ever, an improved version of the above result follows trivially from ..

the result of Marsaglia and Tubilla (1975): Let F2  be a probability

distribution on R+ such that 82(0) > 0 and xl, x2 be two positive numbers such

that S2 (x2 ) > 0, x1 < x2 and xl/x 2 is irrational. If (3.2.1) is satisfied for

• . ....
. . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . .



;: two distinct probability distributions F, concentrated on {11, x2}, the &
F2 is exponential. (If F2 is exponential, -then (3.2.1) is satisfied for any

F1 on R+). '

It is interesting to point out that this result does not hold when the

condition 'any two distinct probability distributions' is replaced by Ia

probability distribution.' This is illustrated by the following example.

Exampe 2_ Let x2 < 2x1 and F 1 be a probability distribution on R+ such

that Fl(x 1 ) - FI(x 1 -) = c and F,(X 2 ) - Fl(X 2 -) 1 - a where 0 a = . 1.

Define a probabaity distribution funotion F2 on R+ such that

0 if x < X1,

F 2 (x) 0 • if x 1 •X x2 , 0< < 1,

+ * - - x 1 ) ÷ 1 - cL)F2 (x - x2 )) if x > x2 .

Clearly F 2 is a distribution function and satisfies (3.2.1).

It is possible to give several other variants of our modified version of

the result of Orosswald et al (1980) Fuoh as the arithmetic analogue

characterizing the geometric distribution. .

In this paper, it is shcwn thau if Boo R ",... are record values from a

continuous distribution function F(x) and 0 .-. i < . are fixed integer&, then

the independence of Rj - Ri and Ri implies that F is exponential or sh.tfted

exponential.

There is an implicit assumption in the proof given by Dallas that every

point of [a, m) is a support point of F. Further, the derivat-.on of the

........................-. ,. .. . . .
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conditional distribution (Dallas, 1981, p. 950) needs some Justification

espeotally if one is dealing with a distribution having a singular continuous

component in its Lebesgue decomposition. We provide the sketch of an

alternative and more satisfactory proof based on LRS theorems.

Let for any a < b, the right extremity of the distribution function F,

{R(ne), n a 1, 2,...) be a sequence of record values from the distribution

-I FC) if x > 0,

0 otherwise.

It is easily seen that R- R1 in independent of Rip if and only if the

distribution of R•() - o is independent or c a.*.[Fl. The distribution ofi-i

R'o) - a is computed to be

[( - i - l)l' (-logy)J- ildy if oa + x < b

(3.1 P(R. - 0 - x) if o >x b

0if x < 0,

where m i El - F(o +x)/[1 - F(0)3. (A rigorous proof of (3.3.1) follows from
- )i•!i•- -

a lemma in Kotz and Shanbhag, 1980.) Consequently, it follows that R R is

independent of Ri if and only if b a and [1 - F(o + x)]/[1 - F(o)] is

independent of o a.e.[F]. Then from the result of Marsaglia and Tubilla

(1975) (and not from the usual lack of memory property of an exponential

distribution as mentioned by Dallas), it then follows that F is either

exponential or shifted exponential. (Observe that if [E - F(c + x)3/[1

- F(o)], x > 0 is independent of o a.e.[F], then the left extremity of F

should be some a > - • and for every n e supp EF] and x R+.

1 - F(o * x) * El - F(x + a)][1 - F(o)] a.e.[F]).
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3.14 1njii984)

This paper reviews some of the characterization results on the

exponential and geometric distributions based on properties of" order

statistics and record values. As mentioned in our present discussion and

elsewhere, several of these results and improved versions in some oases can be

deduced directly from LRS theorems, which provide a unified approach to a wide.'

variety of problems. Hcwever, we make a comment on Theorem 2 of Deheuvels 2;

(1984) which is, perhaps, only of minor relevance to this discussion. The

theorem mentioned is not valid unless in the statement above equation (7) on

p. 329 of the paper, 'for all z' is replaced by 'for z e R a.e.[F]' and 1

- F(x) on the right hand side of (7) is changed to I - F(z). (The latter of

the two errors in question appears to be a misprint).

3.5 Rao 1081

We give heres slight refinements and extensions of some of the results

mentioned in Rao (1983), which again follow from Lau-Rao theorem.

Theorem 5.1 of Rao (1983) states: Let the distribution function F of a

r.v. X be continuous and such that F(O) t 0 < F(x) < 1 for all x e [0,-).

Then F(x) x 1 - e7X if and only if -j+ Rj and R, have the same
distribution, where RI, B2 ,,.., are record values. This theorem remains true

10~~~~~~. :... aercrdvle

even if F is assumed to bj such that F(O) a 0, the right extremity is not a

discontinuity point, and at Least c..ne of its support points is a continuity

point.

................................................

: :-:' .:':-.
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Theorem 5.2 of Rao (1983) states: Let. X be a discrete r.v. taking values

0, I,... suoh that pi F(X = i) > 0 for all i. Then X has a g eometrio

distribution if RjI -R has the same distribution as R, e 1. This theorem

remains true if instead of pi > 0 for all i, we have only sup{4 :pi > O)

and P1 > 0 for i n 0,...,J + 1.

Theorem 4.3 of Rao (1983) states: Let X(I) . X(2) be order statistios in

a sample of size 2 from a discrete distribution on (0, I, 2,...) with

P(X i) uP 0 0 for all i. Then

(3.5.1) E(X( 2 ) - X( 1)IX( 1) u x) • A for x .0, 1,...

iff X has a goometrio distribution.

The condition (3.5.1) implies that

(3.5.2) 1.(0r + 0r+I) 2 (Or+ + 0 r+2 + "" ), r 0, 1,...

where Gr Pr + Pr+1 + .... Clearly (3.5.2) is equivalent to

(3.5.3) i4Gr * 2Gr+1 + pGr÷2, r 0 1, 1,...

and the desired result follows from (3.5.3) by applying Shanbhag's lemma. -

(The expression (4.4) in Rao (1983) should be as in (3.5.2).)

A stronger version of the above result is obtained by replacing the

condition (3.5.1) by
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E(,(X( 2 ) - X(1 ))IX( 1 ) x) = u for x 0, 1,....

where * is such that Ei 4(X( 2 ) - X(1 ))I} < -1, 1(I) > 0(0) and

0(r + 2) - 2p(r + 1) + *(r) ._ 0 for all r, i.e., the second differenoes of

4are non-negative. " -,

Another version of Theorem 4.3 is obtained by considering only samples

without ties, in which case X( 2 ) > X(1). Let 4 be an increasing funotion such

that 0(2) - 0(1) > 01.). Then

E(O(X(2) -X(1)),X(1) aX) . 110 x 01O 1,...

implies that

Pi" Bi 8  ± 1, 2,...

for some E • (0,1) and pO is arbitrary. (Slightly stronger results than those

discussed here follow via the extended version of Shanbhag's lomma. given in

section 2; the results are also valid when -4 meets the requirement$ of 4).

Finally Theorem 6.2 of Rao (1983), in which some assumpticns are not.

explicitly mentioned, can be stated as follows: Let x be a non-negative

random variable with a continuous distribution function F, and h be a real

function on [1,0-) such that it is either increasing or decreasing with h(x) A ,'

h(l+) for eachx> 1. If

E[h(E)IX_> a] - constant Y a c (0,1)

4...'. -. 'i.--..

.. . . . . . . . . . . . . . . . . . . . .'- -4--.
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*then X has a Pareto distribution. (The result in question remains valid even

when the assumption of oontinuity of F is roplaosd by F(O) 0; also the

* ~extended result remains valid when the assumption that h(x) A h( 1.) for each

x > 1 in repinoed by that there exist Points X1, X2 > I such that

h(x +e xi) A h(xi-), 1 1,~ 2 for each x > 0 and log x1/log x2 is irrational).



21

4. A VARIANT OF THE LAU-RAO THEOREM

Consider the following equation which is a variant of the one discuased

by Lau and Rao (1982):

(4.1) J f(xR y)p(dy) * f(x) +o a.e.[l] for xe R+

where f • -+ R is a locally integrable Borel measurable function and Vi in a

cr-finite measure on R+ with 1({O)) < 1. (The identity in (4.1) is understood

as the one for which the left hand aide exists and equals the right hand

side.) This may W'.early be viewed an an integrated version nf the equation

f(x + y) a f(x) + f(y) which is derived from the Cauchy equation by taking I
logarithms. In this case, by analogy with Lau-Rao theorem, one would be

tempted to conjecture that a solution of (4.1) is a.e. of the same form as the

logarithm of a positive solution of Lau-Rao equation. However, we have the

followinig counter example to show that such a conjecture cannot hold.

,Exa JL3 Consider p to be a probability measure on R+ such that it is

determined by an infinitely divisible probability distribution with an entire

characteristic function. From Picard's theoram (o.f. Titchmarsh, 1949,

P. 277) and the tact that the characteristic function involved here does not

vanish, we can conclude that there exist infinitely many points (ar, br)o B2 R

such that

e arx+ibrx(dx)
R+i

or equivalently such that

a x
(4.2) r e cos(brx)u(dx) 1 1

R+

.. .. .. . .. .. .. . .. .. .. .

.. . . -*S***.S** 'Ot'.
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and

(4R3) e rin(brx)(dx) 0.
H+

If we now define

fr(x) • ros(b X), X C

it follows immediately, in view of (4.2) and (4.3) that

xr(x + y)Vldy) fr(x), x e R+..

which shows that the conjecture cannot be true. .",

If we replace R by R in the problem considered, we arrive at the variant -

of Lau-Rao problem mentioned in Remark 1 . In this latter case, we have a

simpler oounter example on taking f(x) a x2  and V as arW probability -

distribution with zero mean and finite variance. Clearly we have then

f(x + y)ii(dy) u f(x) + o, X e R.

with

0 f2 P(dx)

(It may be worth pointing out here that the counter example in the case of R+

given above also serves as a counter example in the present case if i+ is

replaced by R.)

o . . . . . . . . . . . . .
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We shall now esbablish the following theorem answering the question of

identification of the solution of (4.1) partially.

Theorem If f in (4.1) is not a function which is identically equal to 6

constant a.e.[L] on R and f is either increasirn a.e.[L] on R or decreasing

a.e.[L], then the equation cannot be valid unless either v is a non-arithmetio

measure and f is of the form

e ll+ c( - e"nx) a.e.[L] if n • 0

Y + Ox a.e.[L], if n 0

or v is arithmetic with span • for some A, and f is of the form for which

t f(x)--ne n + a',t - n-,Xn) a.e.[L] if n 0 0f(x , .+ °;i
f(x) + O'n a.e.(L-, if n T 0

where 00 0, y, ac', 0' are constants and rn is such that

fR exp(-n )ji(x) u .

(From the statement of the theorem, it is implicit that if v(R+) ,

then there is no solution to (4.1); this is atlso so if x-(dx) • = when

r 0 and i is non-aritthmetic.)

Proof There is no loss of generality in assuming that f is increasing.

Define for each x e R"

Hx(y) V f(x . •4y - (y), y R R+.

%- .
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In view of the disoussion in Remark 1, it follows that there is no loss of

generality in taking f to be continuous. In that case, we get Hx(-) to be a

oontinuous function on R such that

J R'x+(y,+ z) Vldz) H x(y), y c R+.

From Lau-Rao theorem, we conolude that

(4.4) Hx(y) • ,(y)exp(-ny), y c R+

where is such that t (y is) (Y) V y R+ and every support point x of-..

1j. In the case of non-arithuetio V, (4.14) implies .

(4.5) f(x + ny) • t(x + _n - y) y •(O)exp[- n (x +s W 1 _. y)J

• f(x) + (Oeexp-nx) lxp[E- n(k - 1)y]

* f(x) + tnyexp(-nx), x, y e R+, n >_ 1.

It is easy to check that if (4.5) is valid, then ý (0) a E, - exp(-ny)], y R if

n A 0 and & (0)-y if n a 0. Consequently, it follows that If i is non-

arithmetic we have for every x c R÷

.6) - f(O) () 1 - exp(-nx) if n 0,

Ix if n M 0.

In the case of arithnetic ýi with span A, we have directly from (4.)4)

• . ... .
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f(x + n ) - f(nx) ex(x)exp(-rn),

s (f(x) - f(O)Jexp(-nn,), n 0, 1,...,x e R

and hence for x e R÷ and n :0, 1,... we have

(14.7) f(x+n%) f(x) [f(nO) - f(O)1 ÷f(x) -

(f(x) f(O) +*t)(e-n)n- 1) If n • 0

nt() - f(0)3 If n 0

where [( = [(O) - f()]/[1 - exp(-xrn)].

Me part assertion for the arithmetic case of u in now obvious.

RemarkJ4 lshem et al (1975) considered a special case of the above

theorem with the additional oonditlons that f is non-negative and right

continuous with f(O) = 0, and v is a probability measure, This special case

was used in obtaining a certain oharaoterization of the Poisson process and

its discrete analogue.

Remark If R÷ in (4.1) is replaced by R, then under the assumption that

f is not a function that is equal to a constant a.o3.Lj on H and f is either

increasing or decreasing a.e.CL] or R, it follcws that every solution f of the

equation (4.1) can be expressed as a convex combinati.n of functicns f, and f2

of the form arrived at in the theorem above with n replaced respectively by n,

.................................
.................................................. "................j, , " ".•,,_.•"+"": " L. el.•" + • , : •' '" •
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and n2 satisfying the conditions

exp(nx)(dx) 1, 1 1, 2.

41.1 Dumi•s problm-

Rossberg (1972) and more recently in an unpublished artiole Wolinuta-

Welez and S-ynal (1984) have considered the problem of identifying

oharacteristic functions 01 and *2 (or probability distributions on R) for

which the following equation holds

(4.1.1) (1 - 0"1(t) + 002(t) = 1("I02l ), t E R

with 0 < o < 1. This is indeed an extended version of the problem posed

earlier by Dugue for a a 1/2.

Rossberg (1972) solved the problem when at least one of the 0 'a is non-

arithmetic and Wolinsta-Welez and Szynal (1984) when both 0 and *2 are -.

arithmetic. In both these papers, there is an assumption that the left C;

extremity of the distribution corresponding to * is non-negative and the

right extremity of the distribution correspondihg to 42 is non-positive. We

shal.l now show that under the assumptions made by these authors, the problem

of identifying the solutions to (4.1.1) reduces to a straight-forward

application of LRS theorems.

Let F, and F2 be the distribution functions corresponding to 01 and

respectively. Assume that FI(0-) 1 1 - F = . It is then obvious that2(0) 0':
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(4.1 .1) yields

(4,1.2) oF2 (-x) JF 2 (-x y) dFl(y) x C R6, -"0).

If F is nonarithmetio, (4.1.2) implies, in view of Lau-Rao theorem, that

F2 (-x) ' exp(-ax) for x > 0 and some a > 0, and oonsequently (4.1.1) yields

F2 (-x) • exp(-az), x e R, for some a > 0. (This follows ainoe under the given

assumptions, the faot that F2 (-x) a exp(-ax), x e R÷ - (0) when used in

(4.1.1) gives the following equation relative to probability measures of (0)

on both sides

L (1 - o)F 1 (O) + cF - F2 (-)] F(O)1F2 (O) - F2 (O-)]

20 2(0-)

and henoe F2(O) z F2 (O-). From this it follows that if (4.1.1) is valid, then

under the assumption that at least one Fi is non-arithuetio (and henoe without

loss of generality that F1 is non-arithmetio), we have

- = -bx, x C R÷, F2 (-X) s"ax, x c R÷

with a > 0 and b such that b = ao/Cl - a). (The oonverse of the assertion is

obvious.) This is the result of Rossberg (1972) but for hip apriori

restriction that FI(O) x 0. On the other hand if F1 is aritzimetio, in view of

LHS theorems, (4.1.2) implien that

(4i.1.3) 02 (t) = 1 - 1 ep(-ibt,

for some b > O, c e [0,I] and some 5 e [0,1) with an additional requirtment

-' that the oorresponding oharacteristio function 01 satisfies-. S,•
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(4.1.4) ý1(t){(O - c)eibt - o = 6(1 - a)ibt -0 ÷ a0, -0) < t < .0'

if XI is a random variable oorresponding to •I then from (4.1.4) we have for

n1

(o - a)PF{X1  nb} (08 - a)P(Xl a (n ÷ 1)b.M

implying that either P(XI = nb} * 0 for n 1 1 ora* a. Further (LI.1.4) gives

(a - Z8)P(x1 a 0) a o(a - ):

which yields that a >. 8 whenever a >. a. Thus, it follows that if (14.1.4)

holds, then either ýI(t) 1 1, or for a > max(o,o) and for some b > 0

0 a 00l k.I• a Olexp( 108n~bt < t < •L.•*(•1.1.5) *l(t) . . .: , -00 t.. ......

which ins olearly a oharaoteristic funotion satias ing (4.1 .1). Then it easily

follows that if (4.1.1) is satisfied with at least one of the Oils as

arithmetic and the extremity assumptions are satisfied, then either ýI I 1 and i7

S-= 1 or *1 and $are of the typo given respectively by (4.1.5) and (4.1.3)

for some $ c [0,1) and m c [max(O,ol,l]. This is indeed the result arrived at

by Wolinsta-Welez and S-ynal using a different approach.

The following example illustrates that Rossberg-Wolinsta Weles-Szynal

characterization of (fI, *2) satisfying (4.1.1) does not remain valid if the

assumption that F •(0-) 1 F (0) 0 is dropped.

.E mDLIFor a real 6 A 0, 1, let

* .- .... *
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'i - 1

and

Observe that (41.1.1) is satisfied with a m 1/2 and *.1 and 02are non-

arithmetic. However, *.1 and 02are not of the form given by Rossberg.

on.~

In the above counter example, we have F, (0-) 1 - F()>0 Itmyb

noted that there also exist examples illustrating the point with either Fl(o-)

a 0 or 1I F2(0) u0. In particular, if we take a c&/(1 a)

02t (1 + OX~ it)- 1 (1 -1 8'T A t)-1 -< t

with C1u(8 U 1)/402 an4 8 > 1, we have an example with F1(0-) *0. (The

existence of an example with 1 F2(0) -0 follows by symmetry.)

. .. * ...............................................7..
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